可做作业 考核 论文 联系 QQ:3064302332 微信:wxxygzs
国家开放大学23秋学期离散数学(本)形考任务二[标准答案]
形考任务二(占形考总分的30%)
试卷总分:100 得分:100
1.n阶无向完全图Kn的边数是( ).
A.n
B.n(n-1)/2
C.n-1
D.n(n-1)
2.n阶无向完全图Kn每个结点的度数是( ).
A.n
B.n(n-1)/2
C.n-1
D.n(n-1)
3.已知无向图G的结点度数之和为20,则图G的边数为( ).
A.5
B.15
C.20
D.10
4.已知无向图G 有15条边,则G的结点度数之和为( ).
A.10
B.20
C.30
D.5
5.图G如图所示,以下说法正确的是 ( ) .{图}
A.{(a, e)}是割边
B.{(a, e)}是边割集
C.{(a, e) ,(b, c)}是边割集
D.{(d, e)}是边割集
6.若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (b, c) , (b, d)},则该图中的割点为( ).
A.a
B.b
C.c
D.d
7.设无向完全图K{图}有n个结点(n≥2),m条边,当( )时,K{图}中存在欧拉回路.
A.m为奇数
B.n为偶数
C.n为奇数
D.m为偶数
8.设G是欧拉图,则G的奇数度数的结点数为( )个.
A.0
B.1
C.2
D.4
9.设G为连通无向图,则( )时,G中存在欧拉回路.
A.G不存在奇数度数的结点
B.G存在偶数度数的结点
C.G存在一个奇数度数的结点
D.G存在两个奇数度数的结点
10.设连通平面图G有v个结点,e条边,r个面,则.
A.v + e - r=2
B.r +v - e =2
C.v +e - r=4
D.v +e – r = – 4
11.已知图G中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G的边数是15.( )
12.设G是一个无向图,结点集合为V,边集合为E,则G的结点度数之和为2|E|. ( )
13.若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),
(b, c), (b, d)},则该图中的割边为(b, c).( )
14.边数相等与度数相同的结点数相等是两个图同构的必要条件.
15.若图G中存在欧拉路,则图G是一个欧拉图.
16.无向图G存在欧拉回路,当且仅当G连通且结点度数都是偶数.( )
17.设G是具有n个结点m条边k个面的连通平面图,则n-m=2-k.
18.设G是一个有6个结点13条边的连通图,则G为平面图.
19.完全图K5是平面图.
20.设G是汉密尔顿图,S是其结点集的一个子集,若S的元素个数为6,则在G -S中的连通分支数不超过6